Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 793
Filter
1.
2.
Eur J Med Res ; 29(1): 285, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38745325

ABSTRACT

INTRODUCTION: Hydrogen (H2) is regarded as a novel therapeutic agent against several diseases owing to its inherent biosafety. Bronchopulmonary dysplasia (BPD) has been widely considered among adverse pregnancy outcomes, without effective treatment. Placenta plays a role in defense, synthesis, and immunity, which provides a new perspective for the treatment of BPD. This study aimed to investigate if H2 reduced the placental inflammation to protect the neonatal rat against BPD damage and potential mechanisms. METHODS: We induced neonatal BPD model by injecting lipopolysaccharide (LPS, 1 µg) into the amniotic fluid at embryonic day 16.5 as LPS group. LPS + H2 group inhaled 42% H2 gas (4 h/day) until the samples were collected. We primarily analyzed the neonatal outcomes and then compared inflammatory levels from the control group (CON), LPS group and LPS + H2 group. HE staining was performed to evaluate inflammatory levels. RNA sequencing revealed dominant differentially expressed genes. Bioinformatics analysis (GO and KEGG) of RNA-seq was applied to mine the signaling pathways involved in protective effect of H2 on the development of LPS-induced BPD. We further used qRT-PCR, Western blot and ELISA methods to verify differential expression of mRNA and proteins. Moreover, we verified the correlation between the upstream signaling pathways and the downstream targets in LPS-induced BPD model. RESULTS: Upon administration of H2, the inflammatory infiltration degree of the LPS-induced placenta was reduced, and infiltration significantly narrowed. Hydrogen normalized LPS-induced perturbed lung development and reduced the death ratio of the fetus and neonate. RNA-seq results revealed the importance of inflammatory response biological processes and Toll-like receptor signaling pathway in protective effect of hydrogen on BPD. The over-activated upstream signals [Toll-like receptor 4 (TLR4), nuclear factor kappa-B p65 (NF-κB p65), Caspase1 (Casp1) and NLR family pyrin domain containing 3 (NLRP3) inflammasome] in LPS placenta were attenuated by H2 inhalation. The downstream targets, inflammatory cytokines/chemokines [interleukin (IL)-6, IL-18, IL-1ß, C-C motif chemokine ligand 2 (CCL2) and C-X-C motif chemokine ligand 1 (CXCL1)], were decreased both in mRNA and protein levels by H2 inhalation in LPS-induced placentas to rescue them from BPD. Correlation analysis displayed a positive association of TLR4-mediated signaling pathway both proinflammatory cytokines and chemokines in placenta. CONCLUSION: H2 inhalation ameliorates LPS-induced BPD by inhibiting excessive inflammatory cytokines and chemokines via the TLR4-NFκB-IL6/NLRP3 signaling pathway in placenta and may be a potential therapeutic strategy for BPD.


Subject(s)
Bronchopulmonary Dysplasia , Hydrogen , Inflammation , Lipopolysaccharides , NF-kappa B , NLR Family, Pyrin Domain-Containing 3 Protein , Placenta , Signal Transduction , Toll-Like Receptor 4 , Female , Pregnancy , Lipopolysaccharides/toxicity , Hydrogen/pharmacology , Hydrogen/therapeutic use , Animals , Placenta/metabolism , Placenta/drug effects , Toll-Like Receptor 4/metabolism , Toll-Like Receptor 4/genetics , Signal Transduction/drug effects , Rats , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , NF-kappa B/metabolism , Inflammation/metabolism , Inflammation/drug therapy , Administration, Inhalation , Bronchopulmonary Dysplasia/metabolism , Bronchopulmonary Dysplasia/chemically induced , Bronchopulmonary Dysplasia/drug therapy , Bronchopulmonary Dysplasia/prevention & control , Interleukin-6/metabolism , Interleukin-6/genetics , Rats, Sprague-Dawley , Disease Models, Animal
3.
Environ Sci Ecotechnol ; 21: 100411, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38746776

ABSTRACT

Recent advancements in constructed wetlands (CWs) have highlighted the imperative of enhancing nitrogen (N) removal efficiency. However, the variability in influent substrate concentrations presents a challenge in optimizing N removal strategies due to its impact on removal efficiency and mechanisms. Here we show the interplay between influent substrate concentration and N removal processes within integrated vertical-flow constructed wetlands (IVFCWs), using wastewaters enriched with NO3--N and NH4+-N at varying carbon to nitrogen (C/N) ratios (1, 3, and 6). In the NO3--N enriched systems, a positive correlation was observed between the C/N ratio and total nitrogen (TN) removal efficiency, which markedly increased from 13.46 ± 2.23% to 87.00 ± 2.37% as the C/N ratio escalated from 1 to 6. Conversely, in NH4+-N enriched systems, TN removal efficiencies in the A-6 setup (33.69 ± 4.83%) were marginally 1.25 to 1.29 times higher than those in A-3 and A-1 systems, attributed to constraints in dissolved oxygen (DO) levels and alkalinity. Microbial community analysis and metabolic pathway assessment revealed that anaerobic denitrification, microbial N assimilation, and dissimilatory nitrate reduction to ammonium (DNRA) predominated in NO3--N systems with higher C/N ratios (C/N ≥ 3). In contrast, aerobic denitrification and microbial N assimilation were the primary pathways in NH4+-N systems and low C/N NO3--N systems. A mass balance approach indicated denitrification and microbial N assimilation contributed 4.12-47.12% and 8.51-38.96% in NO3--N systems, respectively, and 0.55-17.35% and 7.83-33.55% in NH4+-N systems to TN removal. To enhance N removal, strategies for NO3--N dominated systems should address carbon source limitations and electron competition between denitrification and DNRA processes, while NH4+-N dominated systems require optimization of carbon utilization pathways, and ensuring adequate DO and alkalinity supply.

4.
Biomaterials ; 309: 122608, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38744189

ABSTRACT

Necroptotic immunogenic cell death (ICD) can activate the human immune system to treat the metastasis and recurrence of triple-negative breast cancer (TNBC). However, developing the necroptotic inducer and precisely delivering it to the tumor site is the key issue. Herein, we reported that the combination of shikonin (SHK) and chitosan silver nanoparticles (Chi-Ag NPs) effectively induced ICD by triggering necroptosis in 4T1 cells. Moreover, to address the lack of selectivity of drugs for in vivo application, we developed an MUC1 aptamer-targeted nanocomplex (MUC1@Chi-Ag@CPB@SHK, abbreviated as MUC1@ACS) for co-delivering SHK and Chi-Ag NPs. The accumulation of MUC1@ACS NPs at the tumor site showed a 6.02-fold increase compared to the free drug. Subsequently, upon reaching the tumor site, the acid-responsive release of SHK and Chi-Ag NPs from MUC1@ACS NPs cooperatively induced necroptosis in tumor cells by upregulating the expression of RIPK3, p-RIPK3, and tetrameric MLKL, thereby effectively triggering ICD. The sequential maturation of dendritic cells (DCs) subsequently enhanced the infiltration of CD8+ and CD4+ T cells in tumors, while inhibiting regulatory T cells (Treg cells), resulting in the effective treatment of primary and distal tumor growth and the inhibition of TNBC metastasis. This work highlights the importance of nanoparticles in mediating drug interactions during necroptotic ICD.

5.
Small ; : e2310940, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38700049

ABSTRACT

Graphene supported electrocatalysts have demonstrated remarkable catalytic performance for oxygen reduction reaction (ORR). However, their durability and cycling performance are greatly limited by Oswald ripening of platinum (Pt) and graphene support corrosion. Moreover, comprehensive studies on the mechanisms of catalysts degradation under 0.6-1.6 V versus RHE (Reversible Hydrogen Electrode) is still lacking. Herein, degradation mechanisms triggered by different defects on graphene supports are investigated by two cycling protocols. In the start-up/shutdown cycling (1.0-1.6 V vs. RHE), carbon oxidation reaction (COR) leads to shedding or swarm-like aggregation of Pt nanoparticles (NPs). Theoretical simulation results show that the expansion of vacancy defects promotes reaction kinetics of the decisive step in COR, reducing its reaction overpotential. While under the load cycling (0.6-1.0 V vs. RHE), oxygen containing defects lead to an elevated content of Pt in its oxidation state which intensifies Oswald ripening of Pt. The presence of vacancy defects can enhance the transfer of electrons from graphene to the Pt surface, reducing the d-band center of Pt and making it more difficult for the oxidation state of platinum to form in the cycling. This work will provide comprehensive understanding on Pt/Graphene catalysts degradation mechanisms.

6.
J Steroid Biochem Mol Biol ; : 106543, 2024 May 11.
Article in English | MEDLINE | ID: mdl-38740074

ABSTRACT

A significant reduction in plasma concentration of cholesterol during early lactation is a common occurrence in high-yielding dairy cows. An insufficient synthesis of cholesterol in the liver has been linked to lipid accumulation caused by high concentrations of fatty acids during negative energy balance (NEB). As ruminant diets do not provide quantitative amounts of cholesterol for absorption, phytosterols such as ß-sitosterol may serve to mitigate the shortfall in cholesterol within the liver during NEB. To gain mechanistic insights, primary hepatocytes were isolated from healthy female 1-day old calves for in vitro studies with or without 1.2mM fatty acids (FA) to induce metabolic stress. Furthermore, hepatocytes were treated with 50µM ß-sitosterol with or without FA. Data were analyzed by one-way ANOVA with subsequent Bonferroni correction. Results revealed that calf hepatocytes treated with FA had greater content of non-esterified fatty acids (NEFA) and triacylglycerol (TAG), and greater mRNA and protein abundance of the lipid synthesis-related SREBF1 and FASN. In contrast, mRNA and protein of CPT1A (fatty acid oxidation) and the cholesterol metabolism-related targets SREBF2, HMGCR, ACAT2, APOA1, ABCA1 and ABCG5 was lower. Content of the antioxidant-related glutathione (GSH) and activities of superoxide dismutase (SOD) also was lower. Compared with FA challenge alone, 50µM ß-sitosterol led to greater mRNA and protein abundance of SREBF2, HMGCR, ACAT2 and ABCG5, and greater content of GSH and activity of SOD. In contrast, compared with the FA group, the mRNA and protein abundance of SREBF1 and ACC1 and the content of TAG and NEFA in the ß-sitosterol + FA group were lower. Overall, ß-sitosterol can promote cholesterol metabolism and reduce oxidative stress while reducing lipid accumulation in hepatocytes challenged with high concentrations of fatty acids.

7.
Lipids Health Dis ; 23(1): 106, 2024 Apr 14.
Article in English | MEDLINE | ID: mdl-38616260

ABSTRACT

BACKGROUND: Dyslipidemia, a significant risk factor for atherosclerotic cardiovascular disease (ASCVD), is influenced by genetic variations, particularly those in the low-density lipoprotein receptor (LDLR) gene. This study aimed to elucidate the effects of LDLR polymorphisms on baseline serum lipid levels and the therapeutic efficacy of atorvastatin in an adult Han population in northern China with dyslipidemia. METHODS: In this study, 255 Han Chinese adults receiving atorvastatin therapy were examined and followed up. The 3' untranslated region (UTR) of the LDLR gene was sequenced to identify polymorphisms. The associations between gene polymorphisms and serum lipid levels, as well as changes in lipid levels after intervention, were evaluated using the Wilcoxon rank sum test, with a P < 0.05 indicating statistical significance. Assessment of linkage disequilibrium patterns and haplotype structures was conducted utilizing Haploview. RESULTS: Eleven distinct polymorphisms at LDLR 3' UTR were identified. Seven polymorphisms (rs1433099, rs14158, rs2738466, rs5742911, rs17249057, rs55971831, and rs568219285) were correlated with the baseline serum lipid levels (P < 0.05). In particular, four polymorphisms (rs14158, rs2738466, rs5742911, and rs17249057) were in strong linkage disequilibrium (r2 = 1), and patients with the AGGC haplotype had higher TC and LDL-C levels at baseline. Three polymorphisms (rs1433099, rs2738467, and rs7254521) were correlated with the therapeutic efficacy of atorvastatin (P < 0.05). Furthermore, carriers of the rs2738467 T allele demonstrated a significantly greater reduction in low-density lipoprotein cholesterol (LDL-C) levels post-atorvastatin treatment (P = 0.03), indicating a potentially crucial genetic influence on therapeutic outcomes. Two polymorphisms (rs751672818 and rs566918949) were neither correlated with the baseline serum lipid levels nor atorvastatin's efficacy. CONCLUSIONS: This research outlined the complex genetic architecture surrounding LDLR 3' UTR polymorphisms and their role in lipid metabolism and the response to atorvastatin treatment in adult Han Chinese patients with dyslipidemia, highlighting the importance of genetic profiling in enhancing tailored therapeutic strategies. Furthermore, this investigation advocates for the integration of genetic testing into the management of dyslipidemia, paving the way for customized therapeutic approaches that could significantly improve patient care. TRIAL REGISTRATION: This multicenter study was approved by the Ethics Committee of Xiangya Hospital Central South University (ethics number K22144). It was a general ethic. In addition, this study was approved by The First Hospital of Hebei Medical University (ethics number 20220418).


Subject(s)
Dyslipidemias , Polymorphism, Genetic , Adult , Humans , Atorvastatin/therapeutic use , 3' Untranslated Regions/genetics , Cholesterol, LDL , Dyslipidemias/drug therapy , Dyslipidemias/genetics , China
8.
Materials (Basel) ; 17(7)2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38612150

ABSTRACT

Sulfide stress cracking (SSC) failure is a main concern for the pressure vessel steel Q345 used in harsh sour oil and gas environments containing hydrogen sulfide (H2S). Methods used to improve the strength of steel usually decrease their SSC resistance. In this work, a quenching and tempering (Q&T) processing method is proposed to provide higher strength combined with better SSC resistance for hot-rolled Q345 pressure vessel steel. Compared to the initial hot-rolled plates having a yield strength (YS) of ~372 MPa, the Q&T counterparts had a YS of ~463 MPa, achieving a remarkable improvement in the strength level. Meanwhile, there was a resulting SSC failure in the initial hot-rolled plates, which was not present in the Q&T counterparts. The SSC failure was not only determined by the strength. The carbon-rich zone, residual stress, and sensitive hardness in the banded structure largely determined the susceptibility to SSC failure. The mechanism of the property amelioration might be ascribed to microstructural modification by the Q&T processing. This work provides an approach to develop improved strength grades of SSC-resistant pressure vessel steels.

9.
Environ Sci Ecotechnol ; 21: 100418, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38638606

ABSTRACT

Urban surface water pollution poses significant threats to aquatic ecosystems and human health. Conventional nitrogen removal technologies used in urban surface water exhibit drawbacks such as high consumption of carbon sources, high sludge production, and focus on dissolved oxygen (DO) concentration while neglecting the impact of DO gradients. Here, we show an ecological filter walls (EFW) that removes pollutants from urban surface water. We utilized a polymer-based three-dimensional matrix to enhance water permeability, and emergent plants were integrated into the EFW to facilitate biofilm formation. We observed that varying aeration intensities within the EFW's aerobic zone resulted in distinct DO gradients, with an optimal DO control at 3.19 ± 0.2 mg L-1 achieving superior nitrogen removal efficiencies. Specifically, the removal efficiencies of total organic carbon, total nitrogen, ammonia, and nitrate were 79.4%, 81.3%, 99.6%, and 79.1%, respectively. Microbial community analysis under a 3 mg L-1 DO condition revealed a shift in microbial composition and abundance, with genera such as Dechloromonas, Acinetobacter, unclassified_f__Comamonadaceae, SM1A02 and Pseudomonas playing pivotal roles in carbon and nitrogen elimination. Notably, the EFW facilitated shortcut nitrification-denitrification processes, predominantly contributing to nitrogen removal. Considering low manufacturing cost, flexible application, small artificial trace, and good pollutant removal ability, EFW has promising potential as an innovative approach to urban surface water treatment.

10.
Virus Res ; 344: 199369, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38608732

ABSTRACT

Tobacco (Nicotiana tabacum) is one of the major cash crops in China. Potato virus Y (PVY), a representative member of the genus Potyvirus, greatly reduces the quality and yield of tobacco leaves by inducing veinal necrosis. Mild strain-mediated cross-protection is an attractive method of controlling diseases caused by PVY. Currently, there is a lack of effective and stable attenuated PVY mutants. Potyviral helper component-protease (HC-Pro) is a likely target for the development of mild strains. Our previous studies showed that the residues lysine at positions 124 and 182 (K124 and K182) in HC-Pro were involved in PVY virulence, and the conserved KITC motif in HC-Pro was involved in aphid transmission. In this study, to improve the stability of PVY mild strains, K at position 50 (K50) in KITC motif, K124, and K182 were separately substituted with glutamic acid (E), leucine (L), and arginine (R), resulting in a triple-mutant PVY-HCELR. The mutant PVY-HCELR had attenuated virulence and did not induce leaf veinal necrosis symptoms in tobacco plants and could not be transmitted by Myzus persicae. Furthermore, PVY-HCELR mutant was genetically stable after six serial passages, and only caused mild mosaic symptoms in tobacco plants even at 90 days post inoculation. The tobacco plants cross-protected by PVY-HCELR mutant showed high resistance to the wild-type PVY. This study showed that PVY-HCELR mutant was a promising mild mutant for cross-protection to control PVY.


Subject(s)
Cross Protection , Mutation , Nicotiana , Plant Diseases , Potyvirus , Viral Proteins , Potyvirus/genetics , Potyvirus/pathogenicity , Potyvirus/enzymology , Nicotiana/virology , Plant Diseases/virology , Viral Proteins/genetics , Viral Proteins/metabolism , Virulence , Animals , Aphids/virology , Cysteine Endopeptidases/genetics , Cysteine Endopeptidases/metabolism , Plant Leaves/virology , China
11.
J Hazard Mater ; 470: 134259, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38626687

ABSTRACT

Seeking for a safe, efficient, inexpensive, and eco-friendly oxidizer is always a big challenge for in-situ chemical oxidation (ISCO) technology. This study adopted the potassium peroxoborate (PPB), a novel peroxide, for soil remediation for the first time. PPB based chemical oxidation system (PPB-CO) could efficiently degrade polycyclic aromatic hydrocarbons (PAHs) without other reagents added, reaching 72.1 %, 64.2 %, and 50.0 % removal rates for naphthalene, phenanthrene, and pyrene after 24 h reaction, respectively. The superior total PAHs removal efficiency (60.6 %) was 3.6-4.7 times higher than that of other commercial peroxides (2Na2CO3•3H2O, CaO2, and H2O2). Mechanism analysis revealed that varieties of reactive oxygen species (ROS) can be generated by PPB through Fenton-like or non-Fenton routines, including H2O2, perborates species, O2•-, •OH, and 1O2. The sustainable generation of H2O2 reduced the disproportionation effect of H2O2 by 86 %, significantly improving the utilization rate. Moreover, sandbox experiments and actual contaminated soil remediation experiments verified the feasibility of PPB-CO in a real polluted site. This work provides a novel strategy for effectively soil remediation, highlighting the selection and application of new oxidants.

12.
Article in English | MEDLINE | ID: mdl-38563118

ABSTRACT

OBJECTIVE: To investigate the esophageal motility characteristics of gastroesophageal reflux disease (GERD) and their relationship with symptoms. PATIENTS AND METHODS: We examined 101 patients diagnosed with GERD by endoscopy and divided them into 3 groups as follows: nonerosive reflux disease (NERD), reflux esophagitis, and Barrett esophagus. Esophageal high-resolution manometry and the GERD Questionnaire were used to investigate the characteristics of esophageal dynamics and symptoms. In addition, the reflux symptom index was completed and the patients were divided into 7 groups according to symptoms. We then determined the correlation between dynamic esophageal characteristics and clinical symptoms. RESULTS: Upper (UES) and lower (LES) esophageal sphincter pressures and the 4-second integrated relaxation pressure in the RE group were lower than those in the NERD group. The 4-second integrated relaxation pressure in the Barrett esophagus group was also lower than that in the NERD group. In the analysis of extraesophageal symptoms, high-resolution manometry showed significant differences in UES pressures among all groups. Further subgroup analysis showed that compared with the group without extraesophageal symptoms, the UES pressure of the groups with pharyngeal foreign body sensation, throat clearing, and multiple extraesophageal symptoms was lower. CONCLUSIONS: As GERD severity increases, motor dysfunction of the LES and esophageal body gradually worsens, and the LES plays an important role in GERD development. Decreased UES pressure plays an important role in the occurrence of extraesophageal symptoms, which is more noticeable in patients with pharyngeal foreign body sensation and throat clearing.

13.
Hemodial Int ; 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38571365

ABSTRACT

This article report a 40-year-old male patient who underwent total thyroidectomy and forearm auto-transplantation in another hospital for secondary hyperparathyroidism. After 4 years of follow-up, the level of parathyroid hormone continued to increase, and ultrasound showed nodules in the neck and right forearm, which were considered to be of parathyroid origin. Technetium 99m sestamibi single photon emission computed tomography and computed tomography (Tc-99m-MIBI SPECT/CT) imaging showed increased radioactive uptake in the submuscular soft tissue nodule of the right medial forearm, maximum standardized uptake value (SUVmax) is 0.98, which was identified as transplanted functioning parathyroid tissue. No parathyroid imaging activity was found in the neck. The patient then underwent partial removal of ectopic parathyroid tissue from the right forearm. Pathological examination confirmed parathyroid tissue, and removal was followed by a rapid decline in serum parathyroid hormone levels.

14.
Immun Inflamm Dis ; 12(4): e1243, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38577988

ABSTRACT

OBJECTIVE: To explore the role of interleukin (IL)-17 in connective tissue disease-associated pulmonary arterial hypertension (CTD-PAH) and to investigate its possible mechanism on pulmonary artery smooth muscle cells (PASMCs). METHODS: Enzyme-linked immunosorbent assay (ELISA) were used to compare levels of serum IL-17 in patients with CTD-PAH and healthy controls (HCs). After treatment for 3 months, the serum IL-17 levels were tested in CTD-PAH. ELISA and immunohistochemistry were used to compare levels of serum IL-17 and numbers of pulmonary artery IL-17+ cells, respectively, in a rat model of monocrotaline-induced PAH and untreated rats. Proliferation, migration, and inflammatory factors expression of PASMCs were assessed after stimulation with different concentrations of IL-17 for various time periods. Proteins in the mitogen-activated protein kinase (MAPK) pathway were examined by western blot. RESULTS: Levels of IL-17 were upregulated in patients with CTD-PAH compared to HCs. After 3 months of treatment, serum IL-17 levels were downregulated with pulmonary artery pressure amelioration. Moreover, serum IL-17 levels and numbers of IL-17+ cells infiltrating lung arterioles were increased in PAH model rats. IL-17 could dose- and time-dependently promote proliferation and migration of PASMCs as well as time-dependently induce IL-6 and intercellular cell adhesion molecule-1 (ICAM-1) expression. The levels of MKK6 increased after IL-17 treatment. Inhibition of MAPK decreased proliferation of PASMCs. CONCLUSION: Levels of IL-17 may increase in CTD-PAH, and IL-17 promotes proliferation, migration, and secretion of IL-6 and ICAM in PASMCs, respectively, which likely involves the p-38 MAPK pathway.


Subject(s)
Interleukin-17 , Myocytes, Smooth Muscle , Pulmonary Arterial Hypertension , Animals , Humans , Rats , Cell Proliferation , Interleukin-17/metabolism , Interleukin-17/pharmacology , Interleukin-6/metabolism , Pulmonary Arterial Hypertension/chemically induced , Pulmonary Arterial Hypertension/metabolism , Pulmonary Artery/metabolism
15.
Plant Dis ; 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38687577

ABSTRACT

Tomato (Solanum lycopersicum L.) is one of the most important vegetable crops in China. In October 2023, a new bacterial disease was discovered on tomato plants in a 0.3-acre farm's greenhouse (35.514806N, 118.996106E) in Longshan Town, Shandong Province, China. Over 50% of the tomato plants showed symptoms of stem rot, leaf wilt, or plant death. Three diseased tomato plants were collected for pathogen isolation and purification. Two leaf samples, each about 1 cm2, were cut from the junction area of healthy and diseased parts and disinfected with 75% alcohol for 60 s, followed by 0.1% HgCl2 for 90 s, and then washed three times with sterilized H2O. The samples were subsequently ground with 1.0 mL sterilized H2O. The ground samples were diluted to 10-4, 10-5, and 10-6 and then were plated on a potato dextrose agar (PDA) plate, respectively. White mucous bacterial colonies appeared at 28℃ for 24~48 h, no fungal colony was observed. Six bacterial colonies were randomly selected for gram staining and found to be gram-negative. To further determine their species classification, fragments of the 16SrDNA, hsp60, gyrB, and rpoB genes were separately amplified using previously reported PCR conditions and with primer pairs, including 27F/1492R (Wu et al., 2023), HSP60-F /HSP60-R (Gül et al., 2023), gyrB UP-1 / gyrB UP-2r (Yamamoto et al., 1995) and rpoB CM81-F / rpoB CM32b-R (Brady et al., 2008). Sequence analysis showed that the obtained sequences of the 16SrDNA, hsp60, gyrB, and rpoB genes among these six colonies were identical and 100%, 100%, 99.31%, and 99.36% similar to those of Enterobacter mori accessions OP601841 (with a coverage of 100%), MT199160 (83%), OP676246 (100%), and MN594495 (100%), at nucleotide level, respectively. Sequences of the above four genes of 23LSFQ were submitted to GenBank under the accession numbers PP461247, PP474090, PP136037, and PP136038, respectively. We selected one of these six colonies, 23LSFQ, for further analysis. The phylogenetic tree based on the concatenated sequences of the above four genes using the maximum likelihood method with MEGAX software showed that 23LSFQ is grouped with E. mori LMG25706 (NCBI: txid980518). To determine the pathogenicity of 23LSFQ , we sprayed 23LSFQ (OD600=0.8) onto five 30-day-old healthy plants of the tomato cultivars Alisa Craig, Jinpeng NO.1, and Chaobei, respectively. These seedlings were incubated in a chamber at 28°C with a 16 h light/ 8h dark photoperiod and 60% relative humidity. The leaves of the inoculated plants became curled and wilted at two days post inoculation (dpi) and appeared necrotic at 10 dpi. The symptoms were similar to those observed in field-infected tomato plants. No symptoms were observed on the plants inoculated with water. We further sequenced the re-isolated bacteria from the symptomatic inoculated seedlings. Results showed that they belong to E. mori. The experiment was repeated three times. E. mori has been found to cause diseases on peaches (Ahmad et al., 2021), watermelons (Wu et al., 2023), Canna indica, (Zhang et al., 2023), and strawberries (Ji et al., 2023). E. cloacae has been found to cause diseases on tomatoes in Heilongjiang province (Jin et al., 2023). This is the first report of E. mori causing leaf yellowing and wilting on tomatoes in China. These results are significant for the safe production and disease control of greenhouse tomatoes.

16.
J Proteomics ; 298: 105155, 2024 04 30.
Article in English | MEDLINE | ID: mdl-38460743

ABSTRACT

Lysine succinylation (Ksucc) is a recently identified posttranslational modification that is involved in many diseases. This study examined the role of Ksucc in the pathogenesis of hypertrophic scar (HS). The presence of Ksucc in human skin was measured by immunoblotting. Ksucc occurs in many skin proteins ranging from 25 to 250 kDa, and higher levels of Ksucc are found in HS skin than in normal skin. An immunoaffinity approach coupled with LC-MS/MS was used to characterize the first succinylome of human skin, and 159 Ksucc sites in 79 proteins were identified. Among these, there were 38 increased succinylated sites in 29 proteins but no decreased succinylated sites in HS compared with normal skin. A parallel reaction monitoring assay was performed to validate the results of the succinylome and showed that the levels of Ksucc in decorin and collagens, which are involved in the pathogenesis of HS, were increased in HS than in normal skin. In addition, increasing the level of Ksucc enhanced cell proliferation and upregulated the expression of fibrosis markers (α-SMA, COL1, and COL3) in human skin fibroblasts. Our results provide global insights into the functional role of Ksucc in hypertrophic scarring.


Subject(s)
Cicatrix, Hypertrophic , Humans , Cicatrix, Hypertrophic/metabolism , Cicatrix, Hypertrophic/pathology , Lysine/metabolism , Proteomics , Chromatography, Liquid , Tandem Mass Spectrometry , Protein Processing, Post-Translational
17.
J Colloid Interface Sci ; 665: 188-203, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38522159

ABSTRACT

Anti-tumor therapies reliant on reactive oxygen species (ROS) as primary therapeutic agents face challenges due to a limited oxygen substrate. Photodynamic therapy (PDT) is particularly hindered by inherent hypoxia, while chemodynamic therapy (CDT) encounters obstacles from insufficient endogenous hydrogen peroxide (H2O2) levels. In this study, we engineered biodegradable tumor microenvironment (TME)-activated hollow mesoporous MnO2-based nanotheranostic agents, designated as HAMnO2A. This construct entails loading artemisinin (ART) into the cavity and surface modification with a mussel-inspired polymer ligand, namely hyaluronic acid-linked poly(ethylene glycol)-diethylenetriamine-conjugated (3,4-dihydroxyphenyl) acetic acid, and the photosensitizer Chlorin e6 (mPEG-HA-Dien-(Dhpa/Ce6)), facilitating dual-modal imaging-guided PDT/CDT synergistic therapy. In vitro experimentation revealed that HAMnO2A exhibited ideal physiological stability and enhanced cellular uptake capability via CD44-mediated endocytosis. Additionally, it was demonstrated that accelerated endo-lysosomal escape through the pH-dependent protonation of Dien. Within the acidic and highly glutathione (GSH)-rich TME, the active component of HAMnO2A, MnO2, underwent decomposition, liberating oxygen and releasing both Mn2+ and ART. This process alleviates hypoxia within the tumor region and initiates a Fenton-like reaction through the combination of ART and Mn2+, thereby enhancing the effectiveness of PDT and CDT by generating increased singlet oxygen (1O2) and hydroxyl radicals (•OH). Moreover, the presence of Mn2+ ions enabled the activation of T1-weighted magnetic resonance imaging. In vivo findings further validated that HAMnO2A displayed meaningful tumor-targeting capabilities, prolonged circulation time in the bloodstream, and outstanding efficacy in restraining tumor growth while inducing minimal damage to normal tissues. Hence, this nanoplatform serves as an efficient all-in-one solution by facilitating the integration of multiple functions, ultimately enhancing the effectiveness of tumor theranostics.


Subject(s)
Nanoparticles , Neoplasms , Photochemotherapy , Humans , Photochemotherapy/methods , Manganese Compounds/pharmacology , Manganese Compounds/chemistry , Tumor Microenvironment , Theranostic Nanomedicine/methods , Hydrogen Peroxide/chemistry , Oxides/chemistry , Photosensitizing Agents/chemistry , Neoplasms/drug therapy , Oxygen , Hypoxia/drug therapy , Cell Line, Tumor , Nanoparticles/chemistry
18.
ACS Appl Mater Interfaces ; 16(14): 17553-17562, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38533759

ABSTRACT

The pore structure of carbon anodes plays a crucial role in enhancing the sodium storage capacity. Designing more confined pores in carbon anodes is accepted as an effective strategy. However, current design strategies for confined pores in carbon anodes fail to achieve both high capacity and initial Coulombic efficiency (ICE) simultaneously. Herein, we develop a strategy for utilizing the repeated impregnation and precarbonization method of liquid pitch to regulate the pore structure of the activated carbon (AC) material. Driven by capillary coalescence, the pitch is impregnated into the pores of AC, which reduces the specific surface area of the material. During the carbonization process, numerous pores with diameters less than 1 nm are formed, resulting in a high capacity and improved ICE of the carbon anode. Moreover, the ordered carbon layers derived from the liquid pitch also enhance the electrical conductivity, thereby improving the rate capability of as-obtained carbon anodes. This enables the fabricated material (XA-4T-1300) to have a high ICE of 91.1% and a capacity of 383.0 mA h g-1 at 30 mA g-1. The capacity retention is 95.5% after 300 cycles at 1 A g-1. This study proposes a practical approach to adjust the microcrystalline and pore structures to enhance the performance of sodium-ion storage in materials.

19.
Proc Natl Acad Sci U S A ; 121(14): e2315982121, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38536757

ABSTRACT

Throughout evolution, arboviruses have developed various strategies to counteract the host's innate immune defenses to maintain persistent transmission. Recent studies have shown that, in addition to bacteria and fungi, the innate Toll-Dorsal immune system also plays an essential role in preventing viral infections in invertebrates. However, whether the classical Toll immune pathway is involved in maintaining the homeostatic process to ensure the persistent and propagative transmission of arboviruses in insect vectors remain unclear. In this study, we revealed that the transcription factor Dorsal is actively involved in the antiviral defense of an insect vector (Laodelphax striatellus) by regulating the target gene, zinc finger protein 708 (LsZN708), which mediates downstream immune-related effectors against infection with the plant virus (Rice stripe virus, RSV). In contrast, an antidefense strategy involving the use of the nonstructural-protein (NS4) to antagonize host antiviral defense through competitive binding to Dorsal from the MSK2 kinase was employed by RSV; this competitive binding inhibited Dorsal phosphorylation and reduced the antiviral response of the host insect. Our study revealed the molecular mechanism through which Toll-Dorsal-ZN708 mediates the maintenance of an arbovirus homeostasis in insect vectors. Specifically, ZN708 is a newly documented zinc finger protein targeted by Dorsal that mediates the downstream antiviral response. This study will contribute to our understanding of the successful transmission and spread of arboviruses in plant or invertebrate hosts.


Subject(s)
Arboviruses , Hemiptera , Oryza , Tenuivirus , Animals , Arboviruses/genetics , Hemiptera/physiology , Tenuivirus/physiology , Insect Vectors , Antiviral Agents/metabolism , Oryza/genetics , Plant Diseases
20.
Plant Cell Environ ; 47(5): 1797-1812, 2024 May.
Article in English | MEDLINE | ID: mdl-38314665

ABSTRACT

As the most abundant form of methylation modification in messenger RNA (mRNA), the distribution of N6-methyladenosine (m6A) has been preliminarily revealed in herbaceous plants under salt stress, but its function and mechanism in woody plants were still unknown. Here, we showed that global m6A levels increased during poplar response to salt stress. Methylated RNA immunoprecipitation sequencing (MeRIP-seq) revealed that m6A significantly enriched in the coding sequence region and 3'-untranslated regions in poplar, by recognising the conserved motifs, AGACU, GGACA and UGUAG. A large number of differential m6A transcripts have been identified, and some have been proved involving in salt response and plant growth and development. Further combined analysis of MeRIP-seq and RNA-seq revealed that the m6A hypermethylated and enrich in the CDS region preferred to positively regulate expression abundance. Writer inhibitor, 3-deazaneplanocin A treatment increased the sensitivity of poplar to salt stress by reducing mRNA stability to regulate the expression of salt-responsive transcripts PagMYB48, PagGT2, PagNAC2, PagGPX8 and PagARF2. Furthermore, we verified that the methyltransferase PagFIP37 plays a positively role in the response of poplar to salt stress, overexpressed lines have stronger salt tolerance, while RNAi lines were more sensitive to salt, which relied on regulating mRNA stability in an m6A manner of salt-responsive transcripts PagMYB48, PagGT2, PagNAC2, PagGPX8 and PagARF2. Collectively, these results revealed the regulatory role of m6A methylation in poplar response to salt stress, and revealed the importance and mechanism of m6A methylation in the response of woody plants to salt stress for the first time.


Subject(s)
Adenosine/analogs & derivatives , Populus , RNA Methylation , Salt Stress/genetics , Methyltransferases/genetics , Populus/genetics , RNA, Messenger/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...